
Meta Paged Flash Translation Layer

Shinde Pratibha
PG Student, Dept.of Info.Tech.

PDVVP COE,
Ahmednagar,

Pune University.

Srinivas
Asst Prof, Dept. of Info .Tech.

RM COE,
Hyderabad,

JNT University.

 Abstract -- Today NAND Flash Memory is used in handheld
electronic devices like mobile, cameras, iPODS, music
players, is also used as an alternative storage medium for
Hard Disk Drives (HDD) in PCs and Labtops. Though Flash
has a faster access and is a good alternative storage media for
HDD. NAND flash memory has many advantageous features
as a storage medium, such as superior performance, shock
resistance, and low power consumption. However, the erase-
before-write nature and the limited number of write/erase
cycles are obstacles to the promising future of NAND flash
memory. An intermediate software layer called Flash
Translation Layer (FTL) is used to overcome these obstacles.
Various trade offs arises in the design of FTLs, depending
upon the various address mapping schemes used for logical to
physical address translation. Various researchers have
invented different FTL design to optimize the performance
while achieving the objectives and goals. This paper takes a
review of all these FTL schemes and presents an innovative
idea to improve the performance of the FTL presented
earlier.

1. INTRODUCTION

Flash memory which is an electronic non volatile memory
can be electrically erased and reprogrammed. It was
developed from EEPROM (electrically erasable
programmable read-only memory). While a flash device
can read any of its pages, it may only write to one that is in
a special state called erased. This is called as ‘erase before
update’ characteristics of Flash. Due to which flash do not
support overwrite i.e. in-place update operation, instead it
supports out of-place-update.
Flash Translation Layer maintains a mapping table of
virtual address to physical address.
It has efficient space for storing mapping tables. Mapping
tables are stored in SRAM .It has the lowest overhead for:
Garbage collection and Address translation i.e. requires
minimum number of valid page read, and page writes
required during garbage collection and address translation.
The granularity of mapping unit (e.g. page or block or
hybrid) that the mapping scheme uses for address
translation that affects the performance of any FTL. These
schemes are described in next section.

Figure 1 : Interface of Flash storage to host system

2. REVIEW OF PREVIOUS FTL SCHEMES

A. Page Level Mapping:
In page mapping scheme the smallest logical unit that FTL
uses for address translation is a page. A page is made up of
certain number of smallest units called as sector. This is
most efficient scheme in that a logical page can be
mapped into any physical page in flash memory. This
mapping information is kept in the form of tables called as
mapping tables.
B. Block Level Mapping:
In block mapping scheme, the smallest logical unit, used by
FTL for address translation, is a block. A block is also
smallest erase unit for flash memory. In order to reduce the
map table size, block mapping can be utilized. In block
mapping the logical page address is divided into a logical
block number and a page offset. For block mapping scheme
the block map table consists of entries storing the physical
block number of the corresponding logical blocks.
The valid pages and the updated page of the original data
block are copied to a new free physical block, and then the
original physical block should be erased.

Shinde Pratibha et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (2) , 2014, 1555-1559

www.ijcsit.com 1555

C. Hybrid Level Mapping:
It combines Page Level Mapping schemes and Block
Level Mapping schemes .Physical blocks are logically
partitioned into two groups :Data Blocks & Log Blocks.
1) BAST (Block Associative Sector Translation)
It consists of two types of blocks: data blocks mapped by
block mapping and log block that act as update buffer,
mapped by page mapping.
RAM requirement of BAST is also less . Only the page
tables of log blocks are to be maintained in RAM and log
blocks are very few in number hence RAM space for
keeping mapping information is less.
2) Super Block scheme:
Attempts to exploit the block level spatial locality . It
maintains page level mapping by separating hot and cold
data within a superblock and consequently the garbage
collection efficiency is achieved. However, this approach
uses a three-level address translation mechanism
.Superblock consists of a set of adjacent logical blocks. To
reduce extra storage and flash memory operations ,the
mapping information is stored in the spare area of NAND
flash memory.
3) FAST (Fully Associative Sector Translation):
FAST is known as optimal hybrid FTL in efficiency and
performance . All the data blocks are mapped using block
mapping scheme. Log blocks are mapped using page
mapping. The scheme uses two types of log blocks: A log
block for sequential writes and a small number of log
blocks for random writes.
If data are overwritten in sequential write and are stored
in a sequential. Log blocks to be shared by all data
blocks. This improves the utilization of log blocks as
compared to BAST. Both type of log blocks are shared by
all the data blocks and data from a single data block can
scatter over many log blocks. Hence, name fully
associative. FAST keeps the single sequential log block
dedicated for sequential writes and random writes.
Lookup complexity of FAST is much larger than BAST, as
in this scheme the data structures maintaining the mapping
information are not simple, due to associativity of data and
log blocks. Therefore for doing a lookup operation all the
log blocks need to be searched because in the mapping
table the index does not indicate the logical page number,
but instead it indicates the physical page number and the
value stored at that index entry indicate the logical page
number. Hence for lookup of a logical page number linear
search is performed, a time consuming operation. For
example if the capacity of the storage flash under
consideration is 4GB, the block size is 128KB, the page
size is 2KB, and the number of log blocks is 320. The
RAM requirement is less and is same as that of the BAST
scheme.
4) LAST (Locality-Aware Sector Translation):
providing multiple sequential log blocks to exploit spatial
locality in workloads. It further separates random log
blocks into hot and cold regions to reduce full merge cost .
LAST depends on an external locality detection mechanism
to provide dynamic separation. The fixed size of the
sequential log buffer brings about the overall garbage
collection overhead.

5) AFTL (Adaptive Two-Level Flash Translation Layer) :
Tto maintain the advantages of the fine-grained and
coarse- grained address translation mechanisms. AFTL
provides a block-device emulation of flash memory .That
is, coarse-to-fine switches incur corresponding fine to-
coarse switches, which causes overhead in valid data page
copies. Additionally, only if all of the data in its primary
block appear in the replacement block, both corresponding
coarse-grained slot and its primary block can be removed.

6) DFTL Scheme:
 DFTL maintains two types of tables in SRAM, namely,
Cached Mapping Table (CMT) and Global Translation
Directory (GTD). CMT stores a small number of page
mapping information like a cache for a fast address
translation in SRAM. It achieves high block utilization
also it completely remove full merge operations this is the
advantage. DFTL suffers from frequent updates of
translation pages in case of write dominant access patterns
or garbage collection this is the disadvantage. DFTL
achieves a good write performance but cannot achieve as
good read performance as hybrid FTLs under read
dominant workloads due to its intrinsic two-tier address
translation overhead. This scheme is paradigm shift from
the previous hybrid mapping schemes. It is fundamentally a
page mapping scheme. It maintains the complete page map
table in the flash memory itself. Hence its RAM
requirement is much less the other schemes.

3. PROPOSED WORK:
The proposed system is based on page level mapping. It
is based on idea of storing the complete page map table in
flash itself . Initially it starts with block level mapping at
the start up. Then complete flash is mapped using block
mapping. This table is called as block map table, which is
kept in SRAM i.e. in the controller’s memory. But the
mapping goes on switching from block level to page level.
For read and write request the block mapping table is first
searched and used if the block entry containing the
requested page is found. But if update request is to be
processed then a mapping granularity takes place. In case
of update request the block number of the requested page
is calculated if the block entry is found in block mapping
table all the pages in that block are switched to page
mapping. The page map table is maintained in the Flash
itself and the pages containing the mapping information in
Flash are referred to as metapages. There is a directory
maintained in RAM storing the addresses of these
metapages. This directory is called as Metadirectory.
If issued read or write operation the corresponding block
number entry is not found in block map table then only the
page map table is concerned. For this the metapage i.e.
page containing the mapping information is read into
memory to locate the address of the requested page. Then
the data is updated. This requires creating new metapage
as mapping information for the requested page is to be
changed. Hence it it as well requires invalidating the old
metapage.

Shinde Pratibha et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (2) , 2014, 1555-1559

www.ijcsit.com 1556

Fig. 2 Architecture of MPFTL

The terms related to Terminology
A. Sector
 Is the smallest amount of data which is read or written at
a time. That is, sector is unit of a read, write operation in
flash.
B. Address translation
Is conversion of logical address that is received by flash
from file system into physical address i.e. the actual
physical on flash address where the data actually resides.
C. Mapping table
Data structure used to store all logical to corresponding
physical address.
Uses a special address translation mechanism that does
with the constrained size of SRAM
D. Features
 It is basically page level mapping. Uses a special address
translation mechanism that does with the constrained size
of SRAM. It overcomes the limitation of limited SRAM
size of controller for storing mapping information, as it
maintains the map table on flash itself.
E. Scope
 NAND Flash is used as portable storage medium for
computers, digital cameras, cell phones and other devices.
flash memory is widely used in:

 Notebook computers
 Personal computers
 Digital cameras
 Cell phones
 Music players
 MP3 players
 Television set-top boxes
 Security systems
 Military systems

F. Goals
To develop a mapping scheme for FTL that gives the
benefit of page level mapping for any general workload of
read or write. Overcome the page level mapping limitation
of limited Controller’s SRAM. To reduce the number of
erase operations required for garbage collection. To reduce
the address translation overhead.

G. Objectives
 To develop basically a page mapping scheme for FTL
which will store the entire page map table in the flash itself.
To develop basically a page mapping scheme for FTL
which will store the entire page map table in the flash itself.
H. Constrain
 In case of a full read load, the performance of this
mapping may degrade little bit over the FAST system.

4. RESEARCH METHODOLOGY
A: Steps to acquire input:
The input to the project is disk I/O workload. For this a
realistic characteristics representative workloads is
collected. Various tool, for e.g. Diskmon tool are available
to collect I/O workloads. The trace files for various
categories of workload are available on the website of
Storage Performance Council SPC.Characteristics of the
representative workloads are analyzed by SPC. To
accomplish this, the individual I/O commands issued by
the host processor(s) are collected and analyzed in order
to create a list of the I/O parameters.
B. Steps To Interpret The Input :
The input trace is having variable length records separated
by comma (hex 2C), with each record being terminated by
a newline character (\n). This record is divided into five
fields.
Each input record consists of five values which indicate 5
different input parameters. All these five fields in a record
collectively describe a single disk IO request. This I/O
request is taken as input I/O request for the simulated flash.
The five parameters are:
Field 1: Application specific unit (ASU)

The ASU is a positive integer representing the
application specific unit. . For example if device under
consideration is hard disk drive then this denotes the
logical volume number. If there are a total of n units
described in the complete trace file, then the trace file
must contain at least one record for each of units 0
through n-1.

Field 2: Logical block address (LBA)
The LBA field is a positive integer that describes the
ASU block offset of the data transfer for this record.
where the size of a block is contained in the description
of the trace file. This offset is zero based, and may range
from 0 to n-1, where n is the capacity in blocks of the
ASU.

Field 3: Size
The size field is a positive integer that describes the
number of bytes transferred for this record.
There is no upper limit on this field, other than the
restriction that sum of the address and size fields must be
less than or equal to the capacity of the ASU.

Field 4: Opcode
The opcode field is a single, case insensitive character
that defines the direction of the transfer. There are two
possible values for this field: “R” (or “r”) indicates a
read operation. This implies data transfer from the ASU
to the host computer.

“W” (or “w”) indicates a write operation. This implies data
transfer to the ASU from the host computer

Shinde Pratibha et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (2) , 2014, 1555-1559

www.ijcsit.com 1557

Field 5: Timestamp
The timestamp field is a positive real number
representing the offset in seconds for this I/O from the
start of the trace. The format of this field is “s.d” where
“s” represents the integer portion, and “d” represents the
fractional portion of the timestamp.

Field 6 (through n): Optional field(s):
Optional fields may be added to the each record in the
trace file by the simple expedient of inserting a field
separator (comma), followed by the field. If there is more
than one field to be added, then each field must be
separated from the preceding field by the comma field
separator.

5. DATABASE DESIGN

Database is in the form of trace file. In order to create a list
of the I/O parameters associated with a specific benchmark,
the characteristics of the representative workloads should
be analyzed and well understood.
The individual I/O commands issued by the host
processor(s) are collected and analyzed. Since many
different analysis programs may be used, and these
programs will in all probability be run “after the fact”, a
goal of the SPC is to collect I/O trace data from various
systems. The trace file is composed of variable length
ACSII records, rather than binary data. This format is
somewhat wasteful of storage space and places higher
CPU demands on analysis programs, it offers many
advantages from a legibility and portability standpoint.
Each record in the trace file represents one I/O command,
and consists of several fields. The following is an example
of the first few record of a trace file:
0,20941264,8192,W,0.551706,Alpha/NT
0,20939840,8192,W,0.554041
The individual fields are separated by a comma with the
trace record being terminated by a newline character (\n).
There is no special end-of-file delimiter; that function
being left to the individual operating systems.

6. IMPLEMENTATION
The project is implemented using an SSD simulator. This
simulator is designed object oriented language and can be
integrated with any FTL designed by the testers. Initially
the project will create an SSD object, which will process
the read and write requests. These read and write requests
provided to the SSD are in the form of a text file called as
trace file, whose format is described in earlier section. The
SSD object requires a controller which. A controller uses
an FTL. This FTL used will be the FTL designed by the
simulator.

7. EXPERIMENTAL SETUP
For experimental result simulation of a 32GB NAND
flash memory with configurations shown in table below is
done.

TABLE I
FLASH MEMORY CONFIGURATION

Input Parameters values

Page read to register 25µ
Page write from register 200µ
Block Erase 1.5ms
Serial Access to register data 50µ

Page Size 4KB

Data register size 2KB

Block size 256KB

To test all the cases of workloads various types of
workloads are selected as shown in table below.
Websearch3 and financial1 and financial2 traces are made
by Storage Performance Council (SPC). Websearch3 is a
good read intensive I/O trace.

TABLE 2
TYPES OF WORKLOADS

Workloads
Request Ratio
(Read: Write)

Inter-arrival
Time(avg)

Websearch 3 R.99% W: 1% 70 ms

Financial 1 R.: 22% W: 78% 8 ms

Financial 2 R: 82% W: 18% 11ms

Random_read R: 99% W: 1% 11 ms

Random _write R: 10% W: 90% 11ms

Financial1 shows a good write intensive workload and is
collected from an OLTP application running at a financial
institution.

8. CONCLUSION
Proposed idea i.e. Meta Paged Flash Translation Layer
(MPFTL) is page level mapping scheme and avoids
recursive merge and full merge required during garbage
collection . It achieves high block utilization and hence
improves overall performance.

Fig. 2 Response time

Shinde Pratibha et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (2) , 2014, 1555-1559

www.ijcsit.com 1558

From the response time got from the various workload it is
observed that the proposed innovative algorithm
outperforms the FAST scheme. FAST is taken as a
representative scheme for comparison as it is has been
considered an optimal one among the various FTL schemes
that are available. The merge operation required during
garbage collection specially in random write workload is
eliminated and the random write performance is improved
very much in case of the proposed scheme i.e. Mata Paged
FTL (MPFTL). However in case of sequential read the
MPFTL does not outweighs the FAST scheme but gives a
comparative performance with FAST i.e. in case of the
workload websearch3 both the schemes have near about
same performance.
The future scope of this project is improve better data
structure for managing the page table, so that the look time
for the page search operation is improved.

REFERENCES
[1] A. Gupta, Y. Kim, and B. Urgaonkar, “DFTL: a Flash Translation

Layer Employing Demand-based Selective Caching of Page-level
Address Mappings,” in ASPLOS, 2009.

[2] Hsin Hung Lin, “An Adaptive Flash Translation Layer for High-
Performance Storage Systems” IEEE Transactions on page: 953 –
965, June 2010, ISSN: 02780070, Volume: 29

[3] Liu D., Wang Y., Qin Z., Shao Z., Guan Y.: A Space Reuse
Strategyfor Flash Translation Layers in SLC NAND Flash Memory
Storage Systems, IEEE Transactions on Very Large Scale

Integration (VLSI) Systems, pages 1-14, May – 2011, ISSN: 1063-
8210 Volume: PP Issue:99

 [4] Shin I.: Light weight sector mapping scheme for NAND-based block
devices, IEEE Transactions on Consumer Electronics, pages: 651 –
656, May 2010, ISSN: 0098-3063 Volume: 56 Issue:2

 [5] S. Lee, D. Shin, Y. Kim, and J. Kim. LAST: Locality-Aware Sector
Translation for NAND Flash Memory-Based Storage Systems. In
Proceedings of the International Workshop on Storage and I/O
Virtualization, Performance, Energy, Evaluation and Dependability
(SPEED2008), Feburary 2008.

[6] “FlashSim: A Simulator for NAND Flash-Based Solid-State Drives”
in Advances in System Simulation, 2009. SIMUL '09. First
International Conference on pages 125-131 ISBN: 978-1-4244-
4863-0

[7] J. Kang, H. Jo, J. Kim, and J. Lee. A Superblock-based
FlashTranslation Layer for NAND Flash Memory. InProceedings of
the International Conference on Embedded Software (EM-SOFT) ,
pages 161–170, October 2006. ISBN 1-59593-542-8.

[8] S. Lee, D. Park, T. Chung, D. Lee, S . Park, and H. Song. A Log
Buffer based FlashTranslation Layer Using Fully Associative
Sector Translation. IEEE Transactions on Embedded Computing
Systems, 6(3):18, 2007. ISSN 1539–9087.

[9] T.-S. Chung, D.-J. Park, S. Park, D.-H. Lee, S.-W. Lee, and H.-J.
Song, “A survey of Flash Translation Layer,” J. Syst. Archit., vol.
55, no. 5-6, 2009.

[10] UMass, “Websearch Trace from UMass Trace Repository,”
http://traces.cs.umass.edu/index.php/Storage/Storage, 2002.

[11] Chung, D. Park, S . Park, D. Lee, S. Lee, and H. Song. System
Software for Flash Memory: A Survey. In Proceedings of the
International Conference on Embedded and Ubiquitous Computing,

pages 394–404, August 2006.

Shinde Pratibha et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (2) , 2014, 1555-1559

www.ijcsit.com 1559

